TreeViz Presents

A User-Friendly Platform for Visualizing Tree Growth

TreeViz

Clients

- Dr. Kiona Ogle 0
- Dr. Michael Fell 0

Mentor

• Isoac Shaffer

• Undergraduate Students

- Riley McWilliams 0
- Alex Bentley 0
- Daniel Rustrumm Architect 0
- Haitian Tang 0
- Qi Han 0

- Team Lead
- Web Developer

 - Back-end Coder
 - Front-end Coder

Our client business

ACGCA inputs & outputs

<u>A</u>llometrically <u>C</u>onstrained <u>G</u>rowth and <u>C</u>arbon <u>A</u>llocation model (ACGCA model) [1]

Problem

- Expanding the audience
 - Not available online

One specified audience group [2]

Problem

- Unfriendly user input
 - Biology knowledge needed
 - Programing experience needed

void growthloop(

sparms *p, gparms *gp, double *Io, double *r0, int *t, double *Hc, double *LAIF, Forestparms *ForParms, double APARout[], double h[], double hh2[], double hC2[], double hB2[], double hBH2[], double r[], double rB2[], double rC2[], double rBH[], double sw2[], double vts2[], double vt2[], double vth2[], double sa2[], double La2[], double vts2[], double dr2[], double vth2[], double bL2[], double br2[], double bt2[], double bts2[], double sa2[], double bh2[], double br2[], double bt2[], double bts2[], double sc2[], double bh2[], double bc2[], double bts2[], double cs2[], double cLr2[], double fL2[], double fr2[], double ft2[], double fo2[], double rfL2[], double fr2[], double ft2[], double fo2[], double rfL2[], double rfs2[], double egrow2[], double ex2[], double rtrans2[], double Light2[], double nut2[], double deltas2[], double LAI2[], int status2[], int errorind[], int growth_st[]

Current Input Example [3]

Problem

- Unfriendly user output
 - Raw numerical data

p: sparms, input parameters

gp: Vector: (timestep, years, tolerance, breast.height,parmax)

r0: The starting radius (m).

- h: A time series of tree height from the simulation for each time step. The length is steps* years+1 due to the initialization (time 0) (m).
- hh: Height at which trunc transitions from a paraaboloid to a cone. Also the height to the base of the crown (m).
- r: A time series of tree radius (m) from the simulation for each time step. The length is steps*years+1 (time 0).
- rB: Radius at the tree's base (m).
- rBH: Radius at breast height (3.37 m).
- sw: Sapwood width which has a maximum of SWmax (m).
- vts: Volume of trunk sapwood (m^3).
- vt: Volume of trunk (m^3).
- vth: Volume of trunk heartwood (m^3).
- sa: Sapwood area at base of trunk (m^2).
- la: Total one-sided leaf area (m^2).
- ra: Fine root area (m^2)
- dr: incremental increase in radius

Output Variables [4]

SolutionInput
(graphical
user
interface)InternetACGCA
(simulate
a tree)Output
(graphical
(raw data)Output
(graphical
visualization)

- User-friendly website
- 30+ inputs made easy to enter
- Grouping of similar inputs
- Text boxes and sliders
- NO command line
- Input descriptions

Projected Example for User Interface [5]

- Server retrieves inputs from user
- Run the ACGCA model
- Send the output back to the user

Solution	Input (graphical user interface)	Internet	ACGCA (simulate a tree)	Output (raw data)	Output (graphical visualization)
----------	---	----------	-------------------------------	----------------------	--

- Tree Visualization
- Tree created from ACGCA outputs
- Cross section of tree rings
- Example outputs:
 - Tree height
 - Trunk radius
 - Crown radius

Solution

Implementation - Key Requirements

- Access to the ACGCA model via internet
- User surveys / login authentication
- Visualize growth of tree over time
- Data transfering (ReST API)
- Cheap (low budget)

Implementation

- Website
 - Vue.js Web pages
 - Three.js Visualization
- Database / Authentication
 - Firebase

- Client's Computer
 - ACGCA instance
- Host Environment / ReST API
 - Amazon Web Service

Architecture

- Design is Identical to Infrastructure
- Resulted from costs restrictions
- Focus on Backend to show complexity

Architecture - Backend Deep Dive

Architecture - Backend Deep Dive

Schedule

	JANUARY 2020				FEBRUARY 2020				MARCH 2020		
capstone	13	20	27	3	10	17	24	26	2	9	16
▼ website				1			3				
set up basic layout develop main pages develop input and output page		((
backend develop											
set up AWS run the model							Ī				
tree visualization											
generate tree create 2D cross session		((
▼ milestone										•	
alpha prototype											

Conclusion

Problem :

- Input requires professional knowledge
- Output is complex to understand

Solution :

- Client side Frontend website and Tree visualization
- \circ $\,$ Server side AWS and ACGCA $\,$

For more information visit:

https://www.cefns.nau.edu/capstone/projects/CS/2020/TreeViz-S20/

Or scan the QR code on the right side

Reference

[1] Dr. Ogle's representation of the ACGCA model screenshot

[2] https://theithacan.org/news/regulations-on-laptop-use-in-college-classrooms-differ-among-professors/

[3] ACGCA input screenshot

[4] ACGCA output screenshot

[5] Example user interface screenshot

[6] Example development tree screenshots